

X-Ray Footprinting Overview and Progress at the ALS

Corie Ralston, Sayan Gupta

A Brief History of Footprinting

A Brief History of Footprinting

1999, 71, 8965.

FOOTPRINTING METHODS COMPARISON

- Protease mapping and cross-linking
- Electron beam radiolysis
- Hydrogen-Deuterium Exchange
- UV photolysis of H₂O₂: "FPOP" =
- Fenton Chemistry

"Protein footprinting by pyrite shrink-wrap laminate," M.Leser... M. Brenowitz, *Lab Chip.*, *15*, 1646–1650 (2015).

"Fast Photochemical Oxidation of Proteins (FPOP) and Mass Spectrometry Follow Sub-millisecond Protein Folding at the Amino-Acid Level," J. Chen... M. L. Gross, *J. Am. Chem. Soc.*, 134, 18724–18731 (2012).

ADVANTAGES OF SYNCHROTRON

- No need for H₂O₂
- Low concentrations of protein
- Permanent modifications
- Dynamics experiments possible
- National User Program

XFP Tackles Progressively More Challenging Projects

2000

2003

Kiselar et al, Ca dependent changes in Gelsolin, PNAS 2003.

2006

Adilakshmi et al, Invivo footprinting NAR 2006, 104, 7910.

2007

Kamal et al, Actin-cofilin interaction (cell motility, division, morphology) PNAS 2007, 104, 7910.

2008

Bohon et al, ATP-dependent structural changes in a protease, Structure 2008, 16, 1157.

2008

Adilakshmi et al, Timeresolved XFP on ribosome assembly Nature 2008, 455, 1268.

2009

Angel et al, Photoactivation of Rhodopsin PNAS 2009, 106 14367.

2010

Wang et al, Glycosylated GP120 Biochem 2010, 49 9032. 2014

2012

Gupta et al, Location and dynamics of protein waters

PNAS 2012, 109 14882.

2013

Clatterbuck et al, Advances in in-vivo XFP Mol Cell 2013, 52, 506.

2014

Gupta et al, Transporter gating mechanism Nature 2014, 512(7512), 101.

FOOTPRINTING AT THE ALS

A DEDICATED XFP BEAMLINE AT THE ALS

- 3.3.1 is currently decommissioned
- Radiation safe for top-off mode
- Beamline Readiness Review needed
- An old NSLS mirror is available

OTHER APPLICATIONS FOR XFP

- H₂O¹⁸ vs H₂O¹⁶ for investigating water dynamics
- XFP on protein crystals to determine packing interactions
- In-vivo XFP on proteins

TIME	
9:30 – 11:30	Welcome and Overview Corie Ralston
	Using Footprinting to Characterize Gating Events in Zinc Transporter Proteins Dax Fu
	Characterizing Conformation Changes in Chloride Transporters Tanmay Chavan
	The Orange Carotenoid Protein: Mechanism of a Photoswitch Corie Ralston
	Designing and Characterizing Organic-IronOxide Interfaces and Applications for Biohybrid Engineering Behzad Rad
11:30 – 1:00	Lunch
1:00 - 2:00	Application of MS-based Footprinting in Drug Discovery and Development Janna Kiselar
	In-situ X-ray Footprinting of Intact, Functional Mitochondria Awuri Asuru

The New X-Ray Footprinting Beamline at the NSLS-II Mark Chance 2:00-4:00 Hands-on Tutorial 4:00-4:30 Coffee Break and Discussion

Tour of the Beamlines

4:30-5:00

X-RAY RADIOLYSIS OF WATER

Water radiolysis & primary radical products

Secondary radical product

$$e_{aq}^{-} + e_{aq}^{-} = H_2 + 2OH^{-}$$

$$e_{aq}^{-} + \bullet OH = OH^{-}$$

$$e_{aq}^{-} + H_3O^{+} = H \bullet + H_2O$$

$$e_{aq}^{-} + O_2 = \bullet O_2^{-}$$

$$H \bullet + H \bullet = H_2$$

$$H \bullet + O_2 = \bullet HO_2$$

$$\bullet OH + \bullet OH = H_2O_2$$

$$\bullet OH + H \bullet = H_2O$$

$$H_3O^{+} + OH^{-} = H_2O$$

Gupta et. al. JSR. 2014. 21(Pt 4):690-9 / Pryor WA. A. R. Physiol. 1988. 48, 657-667 / Buxton et al. JPC Ref. D. 1988. 17-34

VARIATION IN REACTIONS BY RESIDUE

DEALING WITH RESIDUE-SPECIFIC REACTIVITY

Chemical Reviews, 2007, Vol. 107, No. 8 3519

Table 1. Rate Constants for Reaction of Amino Acids with Hydroxyl Radical and Hydrated Electrons^a

	HO-		e_{aq}^{-1}	
substrate	rate $(M^{-1} s^{-1})$	pH	rate $(M^{-1} s^{-1})^b$	pН
Cys	3.5×10^{10}	7.0	1.0×10^{10}	-7
Trp	1.3×10^{10}	6.5 - 8.5	3.0×10^{8}	7.8
Tyr	1.3×10^{10}	7.0	2.8×10^{8}	6.6
Met	8.5×10^{9}	6-7	4.5×10^{7}	7.3
Phe	6.9×10^{9}	7-8	1.6×10^{7}	6.9
His	4.8×10^{9}	7.5	6.0×10^{7}	-7
Arg	3.5×10^{9}	6.5 - 7.5	1.5×10^{8}	6.1
cystine	2.1×10^{9}	6.5	1.5×10^{10}	6.2
Ile	1.8×10^{9}	6.6	N/A	N/A
Leu	1.7×10^{9}	~6	$< 1 \times 10^{7}$	6.5
Val	8.5×10^{8}	6.9	$< 5 \times 10^{6}$	6.4
Pro	6.5×10^{8}	6.8	2.0×10^{7}	6.7
Gln	5.4×10^{8}	6.0	N/A	N/A
Thr	5.1×10^{8}	6.6	2.0×10^{7}	7.0
Lys	3.5×10^{8}	6.6	2.0×10^{7}	7.4
Ser	3.2×10^{8}	~6	$< 3 \times 10^7$	6.1
Glu	2.3×10^{8}	6.5	$1-2 \times 10^7$	5.7-
Ala	7.7×10^{7}	5.8	1.2×10^{7}	7.4
Asp	7.5×10^{7}	6.9	1.8×10^{7}	7.0
Asn	4.9×10^{7}	6.6	1.5×10^{8}	7.3
Gly	1.7×10^{7}	5.9	8.0×10^{8}	6.4

^a http://allen.rad.nd.edu/browse compil.html. ^b Davies, M. J.; Dean, R. T. *Radical-mediated protein oxidation: from chemistry to medicine*; Oxford University Press: 1997; pp 44–45.

LIMITING EXPOSURE

- Fraction Unmodified = 1-[modified/(total of mod+unmod)]
- Limit exposure to stay in linear region

